
TheMarqueeGroup.com

info@themarqueegroup.com

TheMarqueeGroup.com

info@themarqueegroup.com

Week 1: Python Fundamentals

Seminar for

2021 ADAPT Training

Athena Data & Analytics Python Training

July 26 - 29, 2021

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

The Marquee Group

Leaders in Financial Modeling Since 2002

• We believe that spreadsheet-based financial models are the most important decision-

making tools in modern finance

• We have developed a framework and discipline for model design, structure and

development that leads to best-in-class, user-friendly financial models

• We help finance professionals use this framework to turn their models into powerful

communication tools that lead to better, more effective decisions

TRAINING

The Marquee Group Offering

CONSULTING ACCREDITATION

✓ Instructors have real-world

experience and a passion

for teaching

✓ Topics include: Modeling,

Valuation, Excel, VBA

✓Courses are interactive

✓Clients include banks,

corporations, business

schools and societies

✓Services include:

– Model Development

– Model Re-builds

– Model Reviews

– Model Audits

✓Clients include a wide

range of companies in

various industries

✓Offered by the Financial

Modeling Institute (FMI)

✓ The Marquee Group was

one of the founders of the

FMI

✓ FMI administers official

exams for three levels of

financial modeling

certifications

1

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Stay in touch with us!

YOUTUBE

Watch free Excel

and financial

modeling videos

INSTAGRAM

Follow our feed

to keep up with

Marquee news

LINKEDIN

Follow your

instructor and our

company page

WEBSITE

Check out

events, articles,

and our blog

THE BENCHMARQ

Subscribe to our

newsletter for deals

and announcements

2

https://www.youtube.com/channel/UCNId4cO27M909Msf_MksVCw
https://www.instagram.com/themarqueegroup_/
https://www.instagram.com/themarqueegroup_/

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

The Financial Modeling Institute

SKILL VALIDATION

• Demonstrate financial modeling proficiency to employers and clients

PERSONAL DEVELOPMENT

• Earn certifications that are challenging and revered by the industry

CAREER FLEXIBILITY

• Verify skills that are globally relevant and respected in many industries

LEVEL 1 LEVEL 2 LEVEL 3

✓ Foundational level of certification program

✓ Proficiency in building beginner-to-

intermediate financial models

✓ Skills in design and comprehension of

finance, business, accounting and Excel

✓ Attainable following successful

completion of Level 1

✓ Thorough understanding of real-world

applications of financial modeling

✓ Demonstrated ability in advanced Excel,

financial analysis, and financial modeling

✓ Highest level of accreditation achievable

✓ Expert in the end-to-end financial

modeling value chain

✓ Respected thought leader, mentor, and

contributor to financial modeling

education

EACH LEVEL IS RECOGNIZED AS ITS OWN QUALIFICATION

3

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Table of Contents

Section Page

Using Python 5

Data Types 13

Strings 16

String Methods 18

Lists 26

List Methods 29

Dictionaries 33

Tuples 34

Logic/Conditional Statements and

Loops 35

Logical Operators 36

If Statement 39

For Loop 41

While Loop 43

Functions 44

Functions 45

Lambda Functions 47

Section Page
NumPy 48

NumPy 49

Random Numbers 50

Random Number Functions 51

Statistical Functions 55

Matrix 56

Matrix Functions 57

pandas 60

Importing Data 63

Accessing/Slicing Data 72

Manipulating Data 78

Concatenating Data 86

Joining Data 87

Concat vs Join 88

Merging Data 89

Melting Data 97

Plotting 99

Appendix 103

4

Using Python

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using Python – What is Python

• What is Python?

− Python is an interpreted object oriented programming language

− Python allows for quick application development and is highly versatile; it can be used in

applications ranging from machine control to data processing/AI

• Packages

− The core functionality of Python can be extended by using packages

− These packages provide an interface, sometimes referred to as API, to access commands that

automate common routines

− For instance, the pandas package adds the functionality to import a CSV file into an easy to

manipulate format with only one command, whereas the core functionality would require a

minimum of 3 lines of code and be less easy to handle

print(“Hello World”.upper()) Python Interpreter HELLO WORLD

6

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.
7

Using Python – Packages and IDE

• Package Manager

− A package manager allows you to install/update/remove packages from your system

− You can create specific environments if you want to add additional control to which packages and

versions are installed

• Integrated Development Environment (IDE)

− The IDE is where you will develop your Python application, similar to the VBA Environment for

Excel

− The main features of the Jupyter Notebook IDE are:

− Code-completion: provides documentation for popular functions and auto completion

− Syntax-highlighting: color-coded text to differentiate between user-generated variables and Python code

− Web-based: ability to edit and execute code directly from browser

− Permanent Display: allows outputs to be embedded in the notebook for future reference and sharing

Python

pandasPackage Manager NumPy matplotlib

IDE

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using Python – Distribution and IDE

• Anaconda on personal devices

− We will be using the Anaconda Distribution of Python on personal devices which includes

− Python 3.8

− Conda package manager

− Various IDEs including Jupyter Notebook

− Variety of data science packages

• J.P. Morgan Athena on work devices

− You will be using Athena as the development and runtime environment to run Python code on

work devices

− Athena handles package management and has an IDE called Athena Studio

− Launching Jupyter Notebook:

− https://go/jupyter then press the Start button

8

https://go/jupyter

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using Python – Jupyter Notebook Shortcuts

Default Jupyter Notebook IDE Keyboard Shortcuts

Run Cell Ctrl + Enter

Run Cell and Advance to Next Cell Shift + Enter

Edit Cell Enter

Exit Edit Mode Esc

Comment Line CTRL + /

Delete Line CTRL + D

Change Cell to Code Y

Change Cell to Markdown M

Insert a New Cell Above/Below A / B

Copy/Paste/Cut Selected Cells C / V / X

Delete Selected Cells D, D

Hide/Unhide Output O

Tooltips/Help Menu of Current Function SHIFT + TAB

9

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using Python - Comments

• Comments

− Please comment your code! When you come back to something even a few weeks down the road

it’s hard to remember what you were thinking at the time

− Also helps with pseudo code, you can map out your code a bit more freely, keep track of variable

assignments, and write notes so you don’t forget

10

Single line comment

"""

Three quotes for a block, remember to close the block with another
three quotes

"""

Console x

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using Python – Hello World

• Print Hello World to console

− Using print() command

− Don’t forget to comment

− Create a cell

• Console behavior

− When running code line by line, the console will print outputs automatically

− If running a series of lines/cells/file output is only guaranteed using the print() function

− We will typically be running code line by line, see the appendix for details on running cells

>>> print("Hello World")

Hello World

Console x

11

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using Python – Before We Begin

• Before we begin, we will be learning a lot of functions whose purpose is not immediately

obvious

• We are trying to develop the necessary toolkit to handle common issues typically

encountered in data processing

− Cleaning data, we can’t use $100,000.00 as a number to do calculations

− Merging data, ticker 'aapl' is not the same as 'AAPL' or 'Apple Inc.'

− We need to take data from one source and import it into another, Python makes for a good “glue”

language

12

Using Python – Data Types

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.14

Data Types

• We can group the Python Data Types into:

− Numerical Values: Numbers (Integers, Floats); Dates

− Strings: Text; Values with Symbols

• In Python there is no explicit variable declaration, rather you just assign a value to the

variable and start using it

− Python will interpret what you are trying to do and assign the appropriate data type

− You can specify the data type by using the appropriate function

− You can also change data types by “casting” the value using the function but be cautious that you

have the desired result

− Casting is when you transform one data type to another, like float to integer

Basic Python Data Types

Name Function Description Example

Integer int() Non-Decimal Numbers 5

Float float() Decimal Numbers 5.3

String str() Stores either single or multiple characters Hello World

List list() Stores several strings in a sequential list ['Cat', 'Dog', 'Bird']

Dictionary dict() A relational list {'AAPL':'Apple Inc'}

Written as: {Key:Value}

Tuple tuple() An immutable (unchangeable) list ('0.18','0.37','0.7')

Boolean bool() Logical type True (1) or False (0)

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types

Operation Symbol Example

Addition + 5 + 2 = 7

Subtraction - 5 - 2 = 3

Multiplication * 5 * 2 = 10

Division 1 / 5 / 2 = 2.5

Modulus (remainder) % 5 % 2 = 1

Exponent ** 5 ** 2 = 25

Floor Division 2 // 5 // 2 = 2

(to negative infinity) -5 // 2 = -3

Increment Variable += a += 1

-= a -= 1

1. Note that regular division of numbers will always create a float date type

2. Floor division will create an integer data type if dividing by whole numbers

15

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – Strings

• String

− This data type is used to store text type variables

− Doesn’t matter if you use ‘My String’ or “My String” when assigning the string to the variable

− The string is stored as an array in memory. This can be thought of as an indexed collection of

characters

− Python starts counting at 0

Hello World

H e l l o W o r l d

0 1 2 3 4 5 6 7 8 9 10
16

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – Strings

• We can concatenate (combine) strings together using the ‘+’ sign.

− This only works with strings, if you want to concatenate a different data type to a string you must

first cast it to a string using the str() method

• We can also create multiple copies of a value using the ‘*’ sign

− Note that it will make exact copies, thus not adding spaces between occurrences.

>>>print("Hello " + 2) #will cause an error

>>>print("Hello " + str(2))

Hello 2

>>> print("Hello World" * 3)

Hello WorldHello WorldHello World

17

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – String Methods

• In Python, some data types, such as Strings, have methods attached to them which

differs from other programming languages

− If you are familiar with programing you can think of the variable as an object which will execute a

function on demand when called

− When we get into other data types/structures in Python we will introduce properties that are also

callable

String Methods

Method Description

.strip()
Returns a string that has white spaces, or any character passed, removed from the beginning and

end of a string.

.upper() Returns a string that is all upper case.

.lower() Returns a string that is all lower case.

.title() Returns a string with the first letter of each word capitalized (Proper Case).

.replace() Returns a string that has specified characters replaced by another character.

.split()
Returns a list that is comprised of strings divided up from the original string. Comma or Space are

typical characters to split a string apart.

.count() Returns the number of times a character set is found in the string.

.find() Returns the position of a character set in the string.

.join() Returns a string that is joined by the specified character.

18

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – String Methods

• .strip([char])

− By default, this method will remove (“strip”) white spaces at the beginning and end of a string

− The method accepts an optional character argument that it will look for instead of whitespaces

− If you pass a ‘0’ (zero), the method will remove leading and trailing zeros from the string

− Useful for cleaning data while importing

>>> print(' Hello World '.strip())

Hello World

>>> print('00 Hello World000'.strip('0'))

Hello World

Won’t strip the leading space, need to strip twice

>>> print('00 Hello World000'.strip(str(0)).strip())

Hello World

19

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – String Methods

• .upper()
− Returns a string that is all in uppercase

− Takes no arguments

• .lower()
− Returns a string that is all in lowercase

• These are useful when comparing strings, such as a company name or ticker symbol
− ‘A’ is not the same as ‘a’ to the computer

• There are other methods with similar behavior

− .capitalize()

− .title()

>>> print('Hello World'.upper())

HELLO WORLD

>>> print('Hello World'.lower())

hello world

>>> 'A'=='a'

False

>>> print('Hello World'.capitalize())

Hello world

>>> print('hELLO wORLD'.title())

Hello World

20

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – String Methods

• .replace(find, replace, count)

− Will search through the string for occurrences of the string you pass for ‘find’ and will replace

them with the string you pass for ‘replace’

− All occurrences are found by default unless you pass an integer to ‘count’ which will stop the

search after that number of instances

− Useful when cleaning data and removing punctuation, or if a number is stored as text with

commas and currency symbols

− Remember to cast as int/float if you need to use the number later in your program

>>> print('Hello World'.replace('l','L'))

HeLLo WorLd

>>> print('Hello World'.replace('l',''))

Heo Word

>>> print('Hello World'.replace('l','',2))

Heo World

21

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – String Methods

• .split([char])

− Returns a list, which can be stored as a single list variable or split into multiple variables each

containing one portion of the string

− The function will look for the character passed to the argument and create separate strings of

what is contained to the left and right of the character until the end of the string

− Useful when processing data from a “dirty” source

• .format(any)

− Returns a string with the passed arguments formatted and inserted where placeholders are found

− Placeholders are specified by {} in the main string. A specific key or index within the placeholder

can reference values passed to the method

>>> print('Hello, World, Split'.split(','))

['Hello', ' World', ' Split']

>>> "Hello {}".format('world')

Hello world

22

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – String Methods

• To format a number, with the placeholder use ‘:’ followed by the minimum number of

spaces of padding before the decimal, then ‘.’ followed by the number of decimals, then

the data type

>>> "Hello {0} {1:>8.3f}".format('world',4.5678)

Hello world 4.567

#There is an extra space before the 4 because of padding, and the
decimals after 3 are truncated (chopped off)

"Hello {0} {1:>8.3f}".format(‘world’,4.5678)

10
Placeholder index

Right aligned padding with 8 spaces 3 decimals, float data type

String Format
Symbol Description Example Argument Output

d Decimal integer {:05d} 5 0 0 0 0 5

e or E Exponential (scientific) notation, default 6 decimals {:e} 1234 1 . 2 3 4 0 0 0e+03

f or F Floating point number with fixed decimal places {:8.3f} 1.234567 1. 2 3 4

%

Formats number as a percentage, will multiply by 100 and place %

at end {:%} 0.5 5 0%

< Left align within the defined padded region {:<8.3f} 1.234567 1. 2 3 4

^ Center align within the defined padded region {:^8.3f} 1.234567 1. 2 3 4

> Right align within the defined padded region {:>8.3f} 1.234567 1. 2 3 4

= Brings the negative sign to the left most position {:=8.3f} -1.234567 - 1. 2 3 5

23

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – String Methods

• .count([char])

− Returns the number of times a character is found (counted) in a string

• .find([char])

− Returns the first position (index) where the characters were found in a string

• These functions are useful in processing data from ‘dirty’ sources

>>> print('Hello World'.count('l'))

3

>>> print('Hello World'.count('L'))

0

>>> print('Hello World'.find('l'))

2

24

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – String Methods

• .join([iterable])

− Returns a string that is joined using the base string as the joiner

− Used to convert a list data type (see next section) to a string

− Some functions will return a list even if only one result is returned. This is done to make the function

scalable

− If a list only has one element, a string with one element is returned

− If a list has multiple elements, then a long string of each element is returned with the joiner character

between each

• len()

− Returns the length of an array

− When used on a string type it will return the number of characters. It might not be exactly the number of

characters you see on screen if the string contains tabs, carriage returns etc.

− When used on a list it will return the number of elements in the list

− Useful when doing custom processing of data of unknown length, say for a counter

>>> '-'.join(i.strip() for i in ['Hello', ' World', ' Split'])

'Hello-World-Split'

>>> print(len('Hello World'))

11

25

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – Lists

• List

− Stores a series of variables in a one-dimensional array

− Can be called as a group, or individually using the index

− Remember that Python starts counting at zero

− Useful for storing related data, or as a temporary storage before placing into a DataFrame (i.e. a

two-dimensional table of data) or output to a file.

− We can use the multiply to duplicate values in an array

['A','B','C'] # Simple list

['A',2,'C'] # Can mix data types

['A',['B','C'],'D'] # Can put a list in a list (nesting)

>>> mylist = [2] * 3

>>> print(mylist)

[2, 2, 2]

26

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – Lists

• Lists and references

− When assigning variables to a list, the value is copied so there is no link to the original variables

− When assigning a list to another list, the references are maintained so any change to either matrix

will be reflected to the other

− A list can be thought of as a collection of pointers

− This is very important if passing a list (or list type) to a function, that the function has the ability to modify

the data passed to it. This only apply to lists, as variables are local

>>> a = 11

>>> b = 22

>>> c = 33

>>> mylist = [a, b, c]

>>> print(mylist)

[11, 22, 33]

>>> b = 44

>>> print(mylist)

[11, 22, 33]

>>> mylistA = [1,2,3]

>>> mylistB = mylistA

>>> print(mylistA, mylistB)

[1, 2, 3] [1, 2, 3]

>>> mylistA[1] = 4

>>> print(mylistA, mylistB)

[1, 4, 3] [1, 4, 3]

>>> mylistB[1] = 2

>>> print(mylistA, mylistB)

[1, 2, 3] [1, 2, 3]

27

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – Lists

• Change a value by assigning a new value to the list index

• However, you cannot specify an index outside the range (length)

− Logically to add ‘D’ to the end of the list, the index should be a 3, but this will generate an error

because the 3 is outside of the index range

− To add a value to the end of the list the .append() or .extend() methods are required

− To add a value in the middle of the list, the .insert() method is required

>>> mylist = ['A','B','C']

>>> mylist[1] = 'D'

>>> print(mylist)

['A', 'D', 'C']

>>> mylist[3]='D'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

IndexError: list assignment index out of range

28

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – List Methods

List Methods

Method Description

.append() Adds the list or string to a new single element at the end of the list

.extend() Adds the list or string to new elements the end of the list

.remove() Searches for the passed string and deletes from the list if found

.pop() Removes the element from the list based on the index

.insert() Creates a new element at the specified index

.sort() Sorts the list in either ascending or descending order

.reverse() Will reverse the order of the list but does not sort the list

29

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – List Methods

• .append([any])

− Adds an item to the end of the list

− If you pass a string, a string will be added to the end of the list as a single element

− If you pass a list, a nested listed will be created at the end of the list

• This can be accessed by using two indices

• .extend([list])

− Adds the elements of the list passed as an argument to the end of the current list

− This behaviour is different from .append() which only adds all the elements in the passed list into a single

element at the end of the list

>>> mylist = ['A','B','C']

>>> mylist.append('D')

>>> print(mylist)

['A', 'B', 'C', 'D']

>>> mylist.append(['E','F'])

>>> print(mylist)

['A', 'B', 'C', 'D', ['E', 'F']]

>>> print(mylist[4][1])

'F'

>>> mylist = ['A','B','C']

>>> mylist.extend(['D','E'])

>>> print(mylist)

['A', 'B', 'C', 'D', 'E']

30

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – List Methods

• .remove([any])

− Will remove an item from the list based on the string passed.

− Must match exactly and is case sensitive (‘D’ is not a ‘d’ and [‘D’] is not ‘D’)

• .pop(index)

− Will remove an item from the list based on the index

>>> mylist.remove('D')

>>> print(mylist)

['A', 'B', 'C', 'E']

>>> mylist.pop(3)

'E'

>>> print(mylist)

['A', 'B', 'C']

>>> mylist = ['A','B','C','C']

>>> mylist.remove('C')

>>> print(mylist)

['A', 'B', 'C']

31

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – List Methods

• .insert(index, any)

− Allows you to insert an item between two others

− The behavior is to push right

• .reverse()

− Reverses the order of the list by index

• .sort(reverse=False, key=function)

− Default is to sort ascending unless reverse is set to True

− The key can specify a custom function for sorting such as len() to sort by length

>>> mylist = ['A','C']

>>> mylist.insert(1,'B')

>>> print(mylist)

['A', 'B', 'C']

0 1 2

['A', 'B', 'D']

0 1 2 3

['A', 'B', 'C', 'D']

['A','B','D'].insert(2,'C')

Push 'D' Right
to make room
for 'C'

>>> mylist.reverse()

>>> print(mylist)

['C', 'B', 'A']

>>> mylist.sort()

>>> print(mylist)

['A', 'B', 'C']

32

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – Dictionaries

• Dictionary

− Used for relational storage of data

− For example, can be used to cross-reference ticker and company name

− The entry is key:value

− .keys() will return a list of all keys

− .values() will return a list of all values

• Adding items to dictionary

− Specify the key & value relationship

− Same method will also change the value associated with a key

• Removing Items

− .pop([char]) method specifying the key you wish to remove

stocks = {'AAPL':'Apple',

'CAT':'Caterpillar',

'MSFT':'Microsoft'}

>>> stocks.keys()

dict_keys(['AAPL', 'CAT', 'MSFT’])

>>> stocks.values()

dict_values(['Apple', 'Caterpillar',
'Microsoft'])

>>> stocks['BA'] = 'Boeing'

>>> print(stocks)

{'AAPL': 'Apple', 'CAT': 'Caterpillar',
'MSFT': 'Microsoft', 'BA': 'Boeing'}

33

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Data Types – Tuples

• Tuple

− Similar to a list but you cannot change the values

− Useful if you have a set of constants that you don’t want to accidentally change

− Common error is = vs. ==, the first is for assignment the second is for checking if they are equal

− Accessing values by index is same as list

>>> rates = (0.18,0.37,0.7)

>>> print(rates)

(0.18, 0.37, 0.7)

34

Using Python – Logic/Conditional Statements and Loops

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Logic and Loops – Logical Operators

Logical Operators

Operation Symbol Description Example

Equal == Checks if both sides are equal a == b

Greater than > Checks if left side is greater than right a > b

Less than < Checks if left side is less than right a < b

Not Equal to != Checks if left side is not equal to right a != b

Not not() Flips the logical result a not() b

Or or
Checks two or more conditions,

returns true if one of them is true
(a > 5) or (b < 5)

And and
Check two or more conditions,

return true only if they are all true
(a > 5) and (b < 5)

36

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Logic and Loops – Booleans

• The logical data type is known as a Boolean

− 0 is False

− 1 is True

− Most programming languages will interpret 0 as false, and all other numbers as true including negatives

− This is an important distinction when using if statements or while loops, because you must ensure you have

a valid False value to control the program

37

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Logic and Loops – And/Or Logic

• To figure out what the result of using ‘and’/’or’ you can use the following table as a guide

• A simple rule is to consider the ‘and’ operator as multiplication and the ‘or’ operator as
addition

− Since True is 1 and False is 0, only way to get a True with the ‘and’ operator is if all are True

− Same logic for ‘or’ operator, but now only way to get a False is if all are False (0 + 0 = 0)

• Applying the truth logic to the following:

− A = 5

− B = 6

− ((A == 5) and (B < 6)) or ((A > 5) or (B == 6))

− ((True) and (False)) or ((False) or (True))

− (False) or (True)

− True

Operator Setup A B Result

And (A and B)

TRUE TRUE TRUE

TRUE FALSE FALSE

FALSE TRUE FALSE

FALSE FALSE FALSE

Or (A or B)

TRUE TRUE TRUE

TRUE FALSE TRUE

FALSE TRUE TRUE

FALSE FALSE FALSE

38

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Logic and Loops – If Statement

• if Statements

− Only execute code if the condition is True

− Treats False or 0 as not to enter (does not run code), and True or any other number as to enter

(runs code)

− Indents matter

− The code that is indented is considered to be part of the if statement. Once the code is not indented, it is

outside of the if statement and will be executed regardless of the conditional statement

− Adding an else to the condition allows for code to be executed if the condition is not met

#Single Line if

>>> Result = 'Yes' if myvar == 5

#Multiline if with else

>>> if x-5:

... #run this code if true

>>> else:

... #run this code if false

39

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Logic and Loops – If Statement

• if – elif – else statements

− Adding elif (else if) will perform an additional check and execute the specified code if conditions

are met

− Can add as many elif statements as desired

− The elif statements will be checked in order; once one if or elif condition is found True, the rest of

the elif statements will not be checked

>>> if x-5:

... print("Must be True")

>>> elif y==-5:

... print("Y must be True")

>>> elif x==5:

... print("X must be True")

>>> else:

... print("Must be False")

40

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Logic and Loops – For Loop

• For Loops

− Syntax is for (variable) in (iterable):

− Allows the program to loop through any object that has multiple elements

− Number range

− Lists

• Number range

− The range() function lets you quickly create a series of integers

− The syntax is range(start=0, stop, step=1)

− Calling range(10) will produce a series of ten numbers from 0 to 9. You can think of this as an open interval

− Calling range (0,10,2) will produce a series of numbers counting by 2: 0, 2, 4, 6, 8

>>> for i in range(2, 10, 2):

... print(i)

...

2

4

6

8

41

>>> for i in range(4):

... print(i)

...

0

1

2

3

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Logic and Loops – For Loop

• For loops can also iterate over items in a list

− Each value in the list will be assigned to the variable before entering the loop

− Ends when the end of the list is reached

>>> tickers = ['AAPL','CAT','MSFT']

>>> for ticker in tickers:

... print(ticker)

...

AAPL

CAT

MSFT

42

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Logic and Loops – While Loop

• While loops will terminate once a condition is reached

− A condition that is possible to escape must be specified

− If the condition can be skipped, it is possible to miss the escape clause

− Using conditions based on floating point numbers create the chance of floating-point errors

>>> i=0

>>> while i < 5:

... print(i)

... i += 1 #same as i = i + 1

...

0

1

2

3

4

43

Using Python – Functions

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Functions

• Functions

− Useful when you need to repeat a set of instructions throughout your code

− Variables (arguments) can be passed to the function to provide the necessary information to

perform the task

− A value/object can be returned and assigned to a variable if necessary

>>> def myfunction():

... # code to run when called

... return() # return a number if necessary

call function and store return value in variable

>>> mynumber = myfunction()

45

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Functions

• The function definition must be done before it is called

• Default values can be specified if desired

• Syntax

− def functionName(arguments):

some code indented

return(variable)

− If specifying variables with default values, they must be at the end of the arguments in the

declaration

>>> from math import pi

>>>

>>> def fnArea(radius=1):

... area = pi * (radius ** 2)

... return(area)

...

>>> print(fnArea(2))

12.566370614359172

46

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Functions – Lambda Functions

• Lambda functions work as regular functions but are typically “one liners”

− Simple functions

− Useful when manipulating datasets

• Syntax

− functionName = lambda arguments: some operation code

− Example:

− x = lambda a, b : (a+1)*b

>>> x = lambda a, b : (a+1)*b

>>> print(x(1,2))

4

>>> fnCube = lambda num : num ** 3

>>> print(fnCube(2))

8

47

Using Python – NumPy

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy

• NumPy provides Python a powerful set of mathematical and statistical functions

− Very similar to MATLAB

− Will be primarily focusing on

− Random Numbers

− Statistical Operations

− Matrix Operations

>>> import numpy as np

>>> print(np.__version__)

1.15.3

49

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Random Numbers

• Random Numbers

− We can generate a single or series of random numbers using built in functions

Common Random Functions

Function Description

.random.seed() Sets a seed for the generator(s)

.random.randint() Draws integers from the “discrete uniform” distribution

.random.random() Draws floats from the “continuous uniform” distribution

.random.normal() Draws samples from a normal (Gaussian) distribution ~ N(0,1)

.random.uniform() Draws samples from a uniform distribution ~ U(0,1)

.random.rand()
Create an array of given size and populates with random samples from a uniform

distribution over [0,1)

.random.randn() Generates numbers from a standard normal distribution N(0,1)

50

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Random Number Functions

• .random.seed()

− Computers generate a series of random number based on an algorithm

− The pattern of random number is determined by its starting value, the seed

− This is useful for replication of runs and auditing purposes

− Don’t set the seed too often

− Preferably once at the beginning of the program; or,

− At major sections in the code. This can be helpful if the code takes a while to run and you load interim

calculations from a file

#sets a seed for the random number generator. Set once per execution.

>>> np.random.seed(42)

>>> print(np.random.rand(5))

[0.37454012 0.95071431 0.73199394 0.59865848 0.15601864]

>>> print(np.random.rand(5))

[0.15599452 0.05808361 0.86617615 0.60111501 0.70807258]

>>> np.random.seed(42) #notice how setting the seed again creates the same
sequence

>>> print(np.random.rand(5))

[0.37454012 0.95071431 0.73199394 0.59865848 0.15601864]

51

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Random Number Functions

• .random.randint(low, high=None, size, dtype)

− Returns random integers from low (inclusive) to high (exclusive)

− Low: specifies the lowest number that can be drawn (can be negative)

− High: specifies the highest number that can be drawn

− low must be specified, but high can be left blank where it defaults to the limit of the dtype

− Size: specifies the number of draws if passing an integer, or shape of the output matrix if passing

a tuple (m*n*k)

>>> print(np.random.randint(0,10, size=10)) #generates a random
integer from 0 to 10

[9 2 6 3 8 2 4 2 6 4]

52

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Random Number Functions

• .random.normal(loc=0, scale=1,size=1)

− Provides draw(s) from a normal distribution

− Loc: specifies the location (mean/average) of the normal distribution

− Scale: specifies the standard deviation of the distribution

− Remember that standard deviation is the square root of the variance

− Size: specifies the number of draws if passing an integer, or shape of the output matrix if passing

a tuple (m*n*k)

• .random.randn() can be called instead if want to generate numbers from a standard

normal distribution N(0,1)

>>> print(np.random.normal()) #draws a random number from the normal distribution

-0.2933991463586617

>>> print(np.random.normal(5,2)) # can specify mean and standard dev

4.940322861280503

>>> print(np.random.normal(5,2, 10)) # can specify mean and standard dev and size

[5.19025157 6.32930869 4.71956301 4.9336132 3.50184695 3.44323599

6.89768572 8.16170117 4.26365812 5.75112927]

53

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Random Number Functions

• .random.uniform(low=0,high=1,size=1)

− Provides a draw or draws from a uniform distribution

− Low: specifies the lower bound (inclusive)

− High: specifies the upper bound (exclusive)

− Can be thought of as an open interval [low,high)

− Size: specifies the number of draws if passing an integer, or shape of the output matrix if passing

a tuple (m*n*k)

• .random.rand() can be called instead if want to generate numbers from standard

uniform [0,1)

>>> print(np.random.uniform(size=10)) #draws from uniform (0,1)
distribution

[0.37454012 0.95071431 0.73199394 0.59865848 0.15601864 0.15599452

0.05808361 0.86617615 0.60111501 0.70807258]

>>> print(np.random.uniform(5,8,10)) #draws from uniform (5,8)
distribution

[5.06175348 7.90972956 7.49732792 5.63701733 5.5454749 5.55021353

5.91272673 6.57426929 6.29583506 5.87368742]

54

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Statistical Functions

• NumPy has built in statistical functions

− .mean() will return the average by rows or columns

− .cov() will return the variance/covariance by rows or columns

• Other common math functions in NumPy

− .log() finds the natural log

− .exp() raises e to the number in the brackets (undoes log)

− .sqrt() finds the square root

− .linspace() will generate a series of numbers from min to max with the interval defined by the

number of numbers desired

− .linspace(start,stop, number of spaced numbers)

− .linspace(0,10,100) will create 100 numbers from 0 to 10

− .arrange() is similar to range, but lets you count by floats (decimals)

>>> print(np.mean(np.random.normal(5,2, 100)))

5.12884919781713

>>> print(np.cov(np.random.normal(5,2, 100)))

4.491550905995862

>>> print(np.linspace(1,4,13)) #makes 13 numbers from 1 to 4 inclusive

[1. 1.25 1.5 1.75 2. 2.25 2.5 2.75 3. 3.25 3.5 3.75 4.]

>>> print(np.arange(1,10.5,0.5))

[1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5 10.]

55

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Matrix

• To declare a matrix

− Use the np.matrix function and pass the data as a list

− Group rows using [], with commas separating values and commas separating rows

• To access the matrix

− Use [row,col] after the name to specify the cell, row or column you which to retrieve

− Remember that Python starts counting at zero

• Can also use built in functions to declare

− Zero matrix

− Identity matrix

>>>A = np.matrix([[1,2],[3,4]])

>>>print(A)

[[1 2]

[3 4]]

>>>print(A[0,1])

2

>>>print(A[1,])

[[3 4]]

>>>print(A[:,0])
[[1]
[3]]

>>> print(np.zeros([2,2]))
prints a zeros matrix

[[0. 0.]

[0. 0.]]

>>>print(np.identity(2))
prints an identity matrix square

[[1. 0.]

[0. 1.]]

56

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Matrix Functions

• Matrix Multiplication

− Python will interpret A*b as matrix multiplication. Recommend using the np.matmul() function

or @ because A*b is not always clear on the intention

• Quick review of matrix multiplication

− The number of rows is m, and columns is n giving dimension of 𝑚 × 𝑛

− Multiplying matrices follow the rule “row by column”, so the matrix on the left has to have the

same number of rows

as the matrix on the right has columns.

− Repeat for each row on the left by each

column on the right

− Will have an 𝑚𝐿 ×𝑚𝑅 matrix left

>>>A = np.matrix([[1,2],[3,4]])

>>>b = np.matrix([[5,6],[7,8]])

>>>print(A*b) #notice that this does matrix multiplication

[[19 22]

[43 50]]

>>>print(np.matmul(A,b)) #same result, I prefer this method because it’s not
ambiguous

[[19 22]

[43 50]]

1 2 3
4 5 6

7 8
9 10
11 12

=
58 64
139 154

(1 ∗ 7) + (2 ∗ 9) + (3 ∗ 11) = 58

57

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Matrix Functions

• Matrix Division

− .divide or using a “/” between variables does element wise division

− Find the inverse using .linalg.inv() and using the inverted matrix to divide through matrix

multiplication

− To check the inverse is correct, we can multiply by the original matrix and see if we get the identity matrix

as the result

>>> print(np.divide(A,b)) #this is elemental division

[[0.2 0.33333333]

[0.42857143 0.5]]

>>> print(A/b)

[[0.2 0.33333333]

[0.42857143 0.5]]

>>> print(np.matmul(A,np.linalg.inv(b))) #this is matrix division

[[3. -2.]

[2. -1.]]

>>> print(np.matmul(A,np.linalg.inv(A))) #should be identity matrix

[[1.00000000e+00 1.11022302e-16]

[0.00000000e+00 1.00000000e+00]]

58

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

NumPy – Matrix Functions

• Element Wise Matrix Division

− By scalar
3 9
12 15

÷ 3 =
1 3
4 5

− By matrix
3 9
12 15

⊘
3 3
2 5

=
1 3
6 3

• Matrix Division

− Need to find the inverse of the matrix first, where

𝐴𝐴−1 = 𝐼

− Division of 𝐴𝑥 = 𝐵 is

𝐴−1𝐴𝑥 = 𝐴−1𝐵
𝐼𝑥 = 𝐴−1𝐵
𝑥 = 𝐴−1𝐵

59

Using pandas

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

What is pandas

• Stands for Python Data Analysis Library

• Allows Python to handle cross-sectional or time-series data easier

− Stores data in “DataFrames”

− Allows for labelling of variables

− Provides built-in functionality to handle typical missing data, reshaping, merging, sub-setting and

other operations

• Official Documentation

− https://pandas.pydata.org/docs/

• Packages need to be imported into Python

• It is common practice to alias pandas as pd

• Using the alias will allow you to refer to the pandas package as pd

• It's common to refer to a generic DataFrame as df

>>>import pandas as pd

>>>pd.__version__

'0.23.4'

61

http://pandas.pydata.org/pandas-docs/stable/

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using pandas

• Tidy Data Concepts

− Data frames have rows and columns

− Each line is one (indexed) observation

− Each column is one (named) variable

− Each value is assigned to a specific row & column

• This is an important concept to follow because we don't get to view the data like in

Excel.

− Some IDEs have variable explorers which will visualize the data like Excel, but they are slow

especially for large datasets.

(index) Date Ticker Close Bk_mrkt Summer_Dummy

1 2018-01-01 AAPL $123 50 0

2 2018-01-02 AAPL $123 50 0

3 2018-01-03 APPL $125 50 0

62

Importing Data with pandas

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Importing Data – Reading Files

• Reading a csv file into a DataFrame

− .read_csv(filepath, sep, header, nrows, chunksize, …)

− Syntax:

− Filepath (str)

• Location relative to script or project directory

− Sep (str) – Default , (comma)

• Separator or Delimiter

• Used in the file to separate columns

− Header (int) – Default 0 (zero)

• Row number that has the column names

− Nrows (int) – Default None

• If specified, will limit the number of rows to read, useful for “big data”

− Chunksize (int) – Default None

• If specified, the variable will become a generator where each time it is called the next chunk of data is read into

memory.

64

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Importing Data – Reading Files

• Referencing a filename in Python

Referencing a filename in Python

Filepath Location of file

'filename.csv' File is in the Working Directory

'Subdirectory/filename.csv' File is in a subdirectory in the working directory

'../filename.csv' File is in the parent directory of the working directory

'../Parallel Directory Branch/filename.csv' File is in a subdirectory of the parent directory

'../Parallel Directory

Branch/Subdirectory/filename.csv'
File is in a nested subdirectory of the parent directory

65

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Importing Data – Useful Methods

• To get details and view the data in a pandas DataFrame, the following methods are

helpful

>>> sp500 = pd.read_csv('sp500.csv')

>>> print(sp500.head())

Date Open High Low Close Adj Close Volume

0 2013-09-30 1687.260010 1687.260010 1674.989990 1681.550049 1681.550049 3308630000

1 2013-10-01 1682.410034 1696.550049 1682.069946 1695.000000 1695.000000 3238690000

2 2013-10-02 1691.900024 1693.869995 1680.339966 1693.869995 1693.869995 3148600000

3 2013-10-03 1692.349976 1692.349976 1670.359985 1678.660034 1678.660034 3279650000

4 2013-10-04 1678.790039 1691.939941 1677.329956 1690.500000 1690.500000 2880270000

Method Description

.shape Lists the number of rows and columns.

.head()
Prints the first 5 lines by default.

Passing a number between the () will change the default.

.tail() Prints the last 5 lines.

.columns Prints the name of columns.

.info()
Provides index range, column (variable) names, datatypes, and number of

observations.

66

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Importing Data – info Method

• .info() provides

− RangeIndex which is an integer that references the rows starting at 0 for the first row. This index

can be used to access the individual rows to extract data

− The column names and data types are then listed in order of appearance in the DataFrame

− The non-null count provides a count of total observations and is quick way to see if there is

missing data

>>> print(sp500.info())

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 1260 entries, 0 to 1259

Data columns (total 7 columns):

Date 1260 non-null object

Open 1260 non-null float64

High 1260 non-null float64

Low 1260 non-null float64

Close 1260 non-null float64

Adj Close 1260 non-null float64

Volume 1260 non-null int64

dtypes: float64(5), int64(1), object(1)

memory usage: 69.0+ KB

67

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Importing Data – Dates as Index

• If the dataset has dates for each observation, it is common to use them as the index

− Makes it easier to access date ranges for data, or to filter by month/year

• First convert the Date column from object to a DateTime/DateTimeIndex

− DateTime is a data type referenced by the pandas package

− Default expected format “YYYY-mm-dd”

− Follows POSIX (Unix) time standard

• Next, assign the Date column to the index and drop the column from the DataFrame

− Dropping the column will delete it from the DataFrame

− Setting inplace to True will modify the original DataFrame stored in memory

Template df.colname = pandas.function()

>>>sp500.Date = pd.to_datetime(sp500['Date’])

>>>sp500.set_index(['Date'], drop = True, inplace = True)

setting inplace=True is the same as

>>> sp500 = sp500.set_index(['Date'], drop = True)

68

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Importing Data – Dates as Index

• Examining .info() after changing the index

− The index now is a DatetimeIndex type

− The Date column is no longer part of the DataFrame

>>> print(sp500.info())

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 1260 entries, 2013-09-30 to 2018-09-28

Data columns (total 6 columns):

Open 1260 non-null float64

High 1260 non-null float64

Low 1260 non-null float64

Close 1260 non-null float64

Adj Close 1260 non-null float64

Volume 1260 non-null int64

dtypes: float64(5), int64(1)

memory usage: 68.9 KB

Date column is no
longer a data
column

Date Open High
0 2013-09-30 1687.260010 1687.260010
1 2013-10-01 1682.410034 1696.550049
2 2013-10-02 1691.900024 1693.869995
3 2013-10-03 1692.349976 1692.349976
4 2013-10-04 1678.790039 1691.939941

Open High
Date
2013-09-30 1687.260010 1687.260010
2013-10-01 1682.410034 1696.550049
2013-10-02 1691.900024 1693.869995
2013-10-03 1692.349976 1692.349976
2013-10-04 1678.790039 1691.939941

69

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Importing Data – Sorting Data

• We can use two methods to sort data imported into a DataFrame

• .sort_values(by, axis=0, ascending=True, inplace=False)

− By: string or list of string in the order which you want to sort your data

− Axis: 0 sorts the rows; 1 sorts the columns

• .sort_index(ascending=True, inplace=False)

− Ascending: Order to sort the data

− Inplace: set to True to modify the original DataFrame

− Typically leave the other parameters of function as default

>>> sp500.sort_values(['Close'], inplace=True)
>>> sp500.loc[:'2013-10-08']

Open High ... Adj Close Volume
Date ...
2013-10-08 1676.219971 1676.790039 ... 1655.449951 3569230000
2013-10-07 1687.150024 1687.150024 ... 1676.119995 2678490000
2013-10-03 1692.349976 1692.349976 ... 1678.660034 3279650000
2013-09-30 1687.260010 1687.260010 ... 1681.550049 3308630000
2013-10-04 1678.790039 1691.939941 ... 1690.500000 2880270000
2013-10-02 1691.900024 1693.869995 ... 1693.869995 3148600000
2013-10-01 1682.410034 1696.550049 ... 1695.000000 3238690000

>>> sp500.sort_index(inplace=True) # Data is sorted by date again

70

Accessing/Slicing Data with pandas

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Accessing/Slicing – Rows

• There are many ways to access the data stored in the DataFrame

− Some depend on operation; others will seem redundant (legacy)

− Going to focus on the logic in accessing data

• Two main methods:

− .iloc – integer location

− .loc – label location (using index)

>>> print(sp500.iloc[0]) #integer location

Open 1.687260e+03

High 1.687260e+03

Low 1.674990e+03

Close 1.681550e+03

Adj Close 1.681550e+03

Volume 3.308630e+09

Name: 2013-09-30 00:00:00, dtype: float64

>>> print(sp500.loc['20130930']) #label location

Open 1.687260e+03

High 1.687260e+03

Low 1.674990e+03

Close 1.681550e+03

Adj Close 1.681550e+03

Volume 3.308630e+09

Name: 2013-09-30 00:00:00, dtype: float64

Name is the index of the record

Don't need dashes for date

72

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Accessing/Slicing – Slicing

• Slicing is selecting a range of rows/columns

− df.iloc[row start:row end, col start:col end]

− df.iloc[row,col] will only draw a value from the specific cell

− Similar to excel 'D2' would be fourth column second row

− Python uses an open interval (up to not including)

− Think of it as counting [start:# of rows/cols]

− A blank before the : will default to a start at first row/column

− A blank after the : will default to end at the last row/column

in words df.iloc[start at row 0:count 2 rows, col 2 only]

>>> print(sp500.iloc[:2,2])

Date

2013-09-30 1674.989990

2013-10-01 1682.069946

Name: Low, dtype: float64

Up to not including

73

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Accessing/Slicing – Columns

• Extracting a specific column

− Can access a specific column of a DataFrame either by

− df.colname or df['colname']

− Assign to a new variable as

− Newvar = df['colname']

>>> close500 = sp500['Close']

>>> print(close500.head()) #you can see that this made a copy of the
DataFrame, keeping the index

Date

2013-09-30 1681.550049

2013-10-01 1695.000000

2013-10-02 1693.869995

2013-10-03 1678.660034

2013-10-04 1690.500000

Name: Close, dtype: float64

74

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Accessing/Slicing – Filtering Data

• Filtering Data based on Condition

− We can use a logical condition or multiple conditions to select data

− The rows that are kept are True (1) and the ones that are dropped are False (0)

− We can combine the filter with a column selection as well

>>> print(sp500[sp500['Open'] > sp500['Close']].head())

Open High Low Close Adj Close Volume

Date

2013-09-30 1687.260010 1687.260010 1674.989990 1681.550049 1681.550049 3308630000

2013-10-03 1692.349976 1692.349976 1670.359985 1678.660034 1678.660034 3279650000

2013-10-07 1687.150024 1687.150024 1674.699951 1676.119995 1676.119995 2678490000

2013-10-08 1676.219971 1676.790039 1655.030029 1655.449951 1655.449951 3569230000

2013-10-09 1656.989990 1662.469971 1646.469971 1656.400024 1656.400024 3577840000

>>> print(sp500[sp500['Open'] > sp500['Close']][['Open','Close']].head())

Open Close

Date

2013-09-30 1687.260010 1681.550049

2013-10-03 1692.349976 1678.660034

2013-10-07 1687.150024 1676.119995

2013-10-08 1676.219971 1655.449951

2013-10-09 1656.989990 1656.400024

75

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Accessing/Slicing – Copying Warning

• SettingwithCopyWarning

− You will get this warning if you try to chain assignments such as:

rtn_2008 = df[df.year == 2008]['returns']

− The reason is that pandas cannot guarantee if it will return a copy of the data, or a view of the

data as it is dependant on how the data is mapped in memory

− A copy is a stand alone DataFrame completely detached from the original DataFrame where the

information was copied from; a change to one DataFrame does not effect the other

− A view is still accessible as a standalone DataFrame, but is still referenced to the original DataFrame

− If you modify a view, it will modify the original data. This is similar to the relative referencing with lists

− This warning will also occur doing mundane tasks, like .shift()

− This is important to consider if passing a slice of a DataFrame to a function

• There are two methods to work around this problem

− Using the .copy() to force pandas to create a copy and not a view

− Typically used when passing data to a function

− Removing the chained index by slicing as df.loc[:, (cols)]

• This is important when doing an assignment based on a condition

76

Manipulating Data with pandas

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Manipulating Data – Calculations

• To create a new column (variable) in the DataFrame

− df['newcol'] = df['col'] * 2

− Will create a new column that is two times the previous

− In the code below we are taking the natural logarithm of the index close

− A lot of functions can handle DataFrame or array/list type objects

− Functions that cannot handle DataFrame objects can still be used using the .apply() method

Template df['new col(var)'] = code/operation to generate values

>>> sp500['logClose'] = np.log(sp500['Close'])

>>> print(sp500.head())

Open High ... Volume logClose

Date ...

2013-09-30 1687.260010 1687.260010 ... 3308630000 7.427471

2013-10-01 1682.410034 1696.550049 ... 3238690000 7.435438

2013-10-02 1691.900024 1693.869995 ... 3148600000 7.434771

2013-10-03 1692.349976 1692.349976 ... 3279650000 7.425751

2013-10-04 1678.790039 1691.939941 ... 2880270000 7.432780

78

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Manipulating Data – Resampling

• pandas has a built-in function for resampling data frequency

− Rule based, can be specific to each column stored in a dictionary.

Example transforming daily to monthly returns

ohlc is the open high low close resampling rules (added in volume)

>>> ohlc_rule = {'Open':'first', 'High':'max', 'Low':'min',

'Close':'last', 'Volume':'sum', 'Adj Close':'last', 'logRtns':'sum'}

>>> mon500 = sp500.resample('M').agg(ohlc_rule)

>>> mon500.head()

Open High ... Volume Adj Close

Date ...

2013-09-30 1687.260010 1687.260010 ... 3308630000 1681.550049

2013-10-31 1682.410034 1775.219971 ... 76647400000 1756.540039

2013-11-30 1758.699951 1813.550049 ... 63628190000 1805.810059

2013-12-31 1806.550049 1849.439941 ... 64958820000 1848.359985

2014-01-31 1845.859985 1850.839966 ... 75871910000 1782.589966

Common Resampling Rules
Name Description of Action

std The standard deviation of the values over the resampling range

count The number of non-null data points over the resampling range

nunique The number of unique values over the resampling range

bfill

When down sampling (going to a higher frequency, weeks to

days) takes the later value and fills backwards for missing

values

ffill
When down sampling (going to a higher frequency, weeks to

days) takes the current value and fills forward for missing values

Common Resampling Rules
Name Description of Action

first The first valid value

last The last valid value

max The maximum value over the resampling range

min The minimum value over the resampling range

sum The sum of all values of the resampling range

mean The average of all values over the resampling range

median The median (center) value over the resampling range

79

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Manipulating Data – apply Function

• .apply(func, axis=0, args=())

− Applies a function (custom or standard) across a row or column of the data

− Func: Specify the function name, no parenthesis ()

− Axis:

− 0 to apply by column

− 1 to apply by row (use this if you are working across columns)

− Args (tuple): To pass additional arguments to the function

• Using .apply()

− If you are looking at summary statistics, following Tidy Data principles you will be working along

columns

− If you are performing a calculation, you are working along rows

#Apply function

#Used to take a row or group of data and apply a function to them

#Mean of each Column

>>> sp500.apply(np.mean, axis=0)

#Calculates an estimate of vol using Parkinson’s Volatility

>>> sp500['vol'] = sp500.apply(lambda x:

((np.log(x['High'])- np.log(x['Low']))**2)/(4*np.log(2)), axis=1)

80

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Manipulating Data – rolling Function

• Pandas has some built in functions, so you don't always have to use apply

− Rolling will create a rolling window where you can apply sum, count, mean and other standard

statistical functions

− Shift will lag a variable by the specified amount

− Useful for times series analysis

• Every time we create a lagged variable, we lose an observation for analysis

− If you require 60 observations (5 years of monthly data), each lag will require an additional month

to keep 60 observations

#Shift

>>> sp500['vol_1'] = sp500['vol'].shift(1)

#Moving Average

>>> sp500['vol_ma_5'] = sp500['vol_1'].rolling(window = 5,

min_periods=5).mean()

>>> sp500['vol_ma_21'] = sp500['vol_1'].rolling(window = 21,

min_periods=21).mean()

81

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Manipulating Data – rolling Function

82

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Manipulating Data – Output Data

• Pandas has built in methods to output the data stored in a DataFrame to several file

types, most common is to use CSV

• .to_csv(path, sep=',', columns=None, header=True, index=True)

− Path: file path with file name. Could also be a variable with the path string (useful in loops)

− Columns: specify which columns to output to the file

− Sep: specify the delimiter, default is comma (,)

− Header: Default is to include the header of the DataFrame

− Index: Default is to include the index, but it can be meaningless if it is the integer index, useful if

the index was set to dates

>>> mon500.to_csv('../StockData/SP500_mon.csv')

83

Concatenating, Joining, Merging Data with pandas

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Concatenating Data

• There are instances where you are importing data that is divided into separate files

− This is common when dealing with large datasets

− However, when performing analysis it is easiest to work when they are all contained in the same

DataFrame

− We can use the concatenate method to stack the DataFrames together

• .concat(objs)

− Objs: List of DataFrames that you wish to concatenate

#Reload Data before continuing

Splitting into months for illustrative purposes

>>> sp201802 = sp500['2018-02']

>>> sp201803 = sp500['2018-03']

#Concat Feb and March

>>> spcat = pd.concat([sp201802,sp201803])

>>> print(spcat)

85

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Joining Data

• .join(other, how='left', lsuffix='', rsuffix='', sort=False)

− Other: the DataFrame you want to join in

− How:

− Left: use left index

− Right: use right index

− Inner: only the intersection

− Suffix: For overlapping columns, specify the suffix to be used to distinguish

− Sort: Will resort the index after joining

>>> bb = bbcad.join(bbus, lsuffix='_tse', rsuffix='_nyse')

>>> bb.loc['2018-01-12':'2018-01-17']

>>> print(bb.loc['2018-01-12':'2018-01-17'])

High_tse Low_tse Close_tse ... High_nyse Low_nyse Close_nyse

Date

2018-01-12 17.16 16.82 17.00 ... 13.73 13.45 13.65

2018-01-15 17.75 17.25 17.48 ... NaN NaN NaN

2018-01-16 18.07 16.87 17.18 ... 14.55 13.55 13.81

2018-01-17 17.35 16.93 17.00 ... 13.98 13.57 13.67

86

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Concat vs Join

• Concatenating can be thought of as stacking on top of each other

• Joining is like trying to interweave

df1 Result

A B C D A B C D

0 A0 B0 C0 D0 0 A0 B0 C0 D0

1 A1 B1 C1 D1 1 A1 B1 C1 D1

2 A2 B2 C2 D2 2 A2 B2 C2 D2

3 A3 B3 C3 D3 3 A3 B3 C3 D3

4 A4 B4 C4 D4

df2 5 A5 B5 C5 D5

A B C D 6 A6 B6 C6 D6

4 A4 B4 C4 D4 7 A7 B7 C7 D7

5 A5 B5 C5 D5 8 A8 B8 C8 D8

6 A6 B6 C6 D6 9 A9 B9 C9 D9

7 A7 B7 C7 D7 10 A10 B10 C10 D10

11 A11 B11 C11 D11

df3

A B C D

8 A8 B8 C8 D8

9 A9 B9 C9 D9

10 A10 B10 C10 D10

11 A11 B11 C11 D11

df1 df4 Result

A B C D B D F A B C D B D F

0 A0 B0 C0 D0 2 B2 D2 F2 0 A0 B0 C0 D0 NaN NaN NaN

1 A1 B1 C1 D1 3 B3 D3 F3 1 A1 B1 C1 D1 NaN NaN NaN

2 A2 B2 C2 D2 6 B6 D6 F6 2 A2 B2 C2 D2 B2 D2 F2

3 A3 B3 C3 D3 7 B7 D7 F7 3 A3 B3 C3 D3 B3 D3 F3

6 NaN NaN NaN NaN B6 D6 F6

7 NaN NaN NaN NaN B7 D7 F7

Note: Images adapted from: https://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

87

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Merging Data

• Merging allows you to combine two DataFrames on column or index match(s)

• df.merge(right df, how='inner', on=None, left_index=False, right_index=False)

− How: specifies the merging method

− ‘left’ will keep all the 'left' DataFrame rows and only the rows that are matched from the right DataFrame

− ‘right’ will keep all the 'right' DataFrame rows and only the rows that are matched from the left DataFrame

− ‘inner’ will keep only the matched pairs from the left and right DataFrames

− ‘outer’ will keep all the rows from both DataFrames, even if there is no match

− On: the column(s) or index to merge on

− If the index or column is not common across the two DataFrames (different name or different index), then

use left_on and right_on

− Left_Index and Right_Index

− Boolean (True/False), specify if want to merge on the index

− Can be efficient when the indices are both DateTime and merging the DataFrames by dates only

• Depending on the index, can have:

− One to one matching (ideal)

− One to many (can cause serious problems, exploding DataFrames)

− Many to One (not a problem, value is just duplicated)

88

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Merging Data – How Parameter

• Think of Venn Diagrams, the two DataFrames are referenced left and right just like the

circles

Left
Data

Right
Data

Inner Match
Only keep the matched data

Left Match
Keeps all
the data
from the
left frame
and the

matched data

Right Match
Keeps all
the data
from the

right frame
and the

matched data

Outer Match
Keeps all data from both DataFrames

89

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Merging Data – Resulting Size

• One to One matching

• Many to One matching

• One to Many matching

DataFrame will be the same
size after matching

DataFrame will be the same
size after matching

DataFrame can become
significantly bigger after
matching

90

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Merging Data

• Merging is applying logic/control to concatenating and/or joining

• Merging SP500 & Apple data

− This will create a new DataFrame with the Open and Close for the two stocks

>>> sp_aapl201802 = pd.merge(sp201802[['Open','Close']],

aapl201802[['Open','Close']],

left_index=True, right_index=True,

suffixes=('_sp500','_aapl'))

>>> sp_aapl201802.head()

Left Right

key1 key2 A B key1 key2 C D

0 K0 K0 A0 B0 0 K0 K0 C0 D0

1 K0 K1 A1 B1 1 K1 K0 C1 D1

2 K1 K0 A2 B2 2 K1 K0 C2 D2

3 K2 K1 A3 B3 3 K1 K2 C3 D3

Result

key1 key2 A B C D

0 K0 K0 A0 B0 C0 D0

1 K1 K0 A2 B2 C1 D1

2 K1 K0 A2 B2 C2 D2

91

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Merging Data

• Merging with Financials is a bit trickier

− Financial data is only periodical, quarterly or yearly

− We also have to pay attention to when the information is available

− If disclosure is Jan 1st 2018 for FY2017, we shouldn't use that data for 2017 dates but rather use FY2016

− Since we are using daily data, we have to be careful that even if the disclosure happens in the month of

September, we shouldn't use it until the next month

• Pandas merge only allows for exact matching

− We need to create a match dimension that is common between the two datasets

− This will create a sparse match, there will be gaps between the matches

Convert to date time type (provides functions to easier move dates around)

>>> aapl['Date'] = pd.to_datetime(aapl['Date'])

Convert to month end to handle alignment with reporting date

>>> aapl['Match Date'] = aapl['Date'] + pd.offsets.MonthEnd(-1)

using the previous month end to not have information to early

>>> print(aapl.head(30))

Date Open High Low Close Adj Close Volume Match Date

0 2013-10-01 68.349998 69.877144 68.339996 69.708572 63.523125 88470900 2013-09-30

1 2013-10-02 69.375717 70.257141 69.107140 69.937141 63.731426 72296000 2013-09-30

…

28 2013-11-08 73.511429 74.447144 73.227142 74.365715 68.162682 69829200 2013-10-31

29 2013-11-11 74.284286 74.524284 73.487144 74.150002 67.964958 56863100 2013-10-31

92

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Merging Data

• If there are gaps in the DataFrame after merging, the N/As can be filled using the data

that is available before and after the missing observation

• .fillna(value=None, method=None, axis=None, inplace=False, limit=None)

− Value, if blank will use the last known value in the column according to index

− Method

− Backward fill: bfill, will pull the next value and back fill

− Forward fill: ffill, will push the last value and forward fill

− Axis: 0 by index, 1 by columns (across the row)

− Limit will stop fill the current value after a specific number of times

Index Known Values bfill ffill
2019-01-01 5 5 5

2018-12-31 5 2

2018-12-30 5 2

2018-12-29 2 2 2

2018-12-28 2 6

2018-12-27 2 6

2018-12-26 6 6 6

2018-12-25 6 1

2018-12-24 6 1

2018-12-23 1 1 1

93

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Merging Data – drop Function

• .drop(labels=None, axis=0, inplace=False)

− Labels: specify the index (rows) or columns (variable names) you wish to drop

− Axis:

− 0 – Index (rows)

− 1 – Columns (variable names)

− Inplace:

− Set to True to modify the DataFrame without having to reassign it

>>> print(aapl.head())

Date Open High Low Close Adj Close Volume Match Date

0 2013-10-01 68.349998 69.877144 68.339996 69.708572 63.523125 88470900 2013-09-30

1 2013-10-02 69.375717 70.257141 69.107140 69.937141 63.731426 72296000 2013-09-30

2 2013-10-03 70.072861 70.335716 68.677139 69.058571 62.930801 80688300 2013-09-30

3 2013-10-04 69.122856 69.228569 68.371429 69.004288 62.881340 64717100 2013-09-30

4 2013-10-07 69.508568 70.378571 69.335716 69.678574 63.495800 78073100 2013-09-30

>>> aapl.drop(labels='Match Date',axis=1, inplace=True)

>>> print(aapl.head())

Date Open High Low Close Adj Close Volume

0 2013-10-01 68.349998 69.877144 68.339996 69.708572 63.523125 88470900

1 2013-10-02 69.375717 70.257141 69.107140 69.937141 63.731426 72296000

2 2013-10-03 70.072861 70.335716 68.677139 69.058571 62.930801 80688300

3 2013-10-04 69.122856 69.228569 68.371429 69.004288 62.881340 64717100

4 2013-10-07 69.508568 70.378571 69.335716 69.678574 63.495800 78073100

94

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Merging Data – groupby Function

• We can use the groupby method to control the manipulation, calculation or aggregation
of data

− Python doesn't know which data belong together

− If you have several stocks prices in the same DataFrame and applied the .shift() method it would
just shift the prices over without paying attention to the change in tickers

• .groupby(by=None, axis=0, as_index=True)

− By: Pass column name(s) which to use values to create groups on

− Axis:

− 0 – rows (typical for Tidy datasets)

− 1 – columns

− As_index: The keys (by) that are passed will become the index. For example if grouping by
ticker, then calling the ticker will bring up all stock prices for that ticker

• The .groupby() creates what is known as a generator

− A generator is an object that gathers the data only when called

− Generators are typically iterable, so we can loop over the chunks of data

− The generator returns a tuple containing the group name (keys), and a DataFrame that contains the data

• We can also call specific columns (variables) like a normal DataFrame, but it is still a
generator

− Need to apply a method to actually get/manipulate the data

95

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Melting Data

• Melting data can be thought of as unpivoting a DataFrame, taking wide-form data and

converting it into long-form tidy data

• .melt(df, id_vars=None, value_vars=None, var_name=None, value_name=None)

− df: the DataFrame to melt

− id_vars: list of columns to use as identifiers

− value_vars: columns to melt, if blank will use all columns that are not contained in id_vars

− var_name: name of the variable column after melting

− value_name: name of the value column.

%% Loading WIPO Patent data and melting into Tidy data

>>> patent = pd.read_csv('ExData/patent_data.csv', header=6)

Column name across to rows, extract names and then remove the rows

>>> new_columns = patent.iloc[0, : 4].values.tolist()

>>> new_columns.extend(patent.columns[4:])

>>> patent.columns = new_columns

>>> patent.drop(0, inplace = True)

>>> patent.head()

Melting the DataFrame and renaming columns after the fact

>>> patent_melt = pd.melt(patent, id_vars=['Office', 'Technology'], value_vars=['2010', '2011’,
'2012'])

>>> patent_melt.columns = ['country', 'class', 'year', 'number_patents']

96

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Melting Data

Office Office (Code) Origin Technology 1985 1986 1987

Australia AU Total Unknown 86 54 57

Australia AU Total 1 - Electrical machinery, apparatus, energy 550 603 573

Australia AU Total 2 - Audio-visual technology 370 391 349

Australia AU Total 3 - Telecommunications 252 267 270

Australia AU Total 4 - Digital communication 92 93 99

Australia AU Total 5 - Basic communication processes 106 101 102

Office Technology value_var value

Australia Unknown 1985 86

Australia 1 - Electrical machinery, apparatus, energy 1985 550

Australia 2 - Audio-visual technology 1985 370

Australia 3 - Telecommunications 1985 252

Australia 4 - Digital communication 1985 92

Australia 5 - Basic communication processes 1985 106

Australia Unknown 1986 54

Australia 1 - Electrical machinery, apparatus, energy 1986 603

Australia 2 - Audio-visual technology 1986 391

Australia 3 - Telecommunications 1986 267

Australia 4 - Digital communication 1986 93

Australia 5 - Basic communication processes 1986 101

Australia Unknown 1987 57

Australia 1 - Electrical machinery, apparatus, energy 1987 573

Australia 2 - Audio-visual technology 1987 349

Australia 3 - Telecommunications 1987 270

Australia 4 - Digital communication 1987 99

Australia 5 - Basic communication processes 1987 102

Specified in
value_vars, the
columns are
transposed and
repeated for each
identifier(s)
specified in id_vars

The corresponding
values associated
with value_vars are
copied/aggregated as
required to align
with the id_vars

97

Plotting with pandas

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using pandas – Plotting

• The pandas package allows to quickly plot

− Need to import matplotlib.pyplot to show the plot

• Scatter plots are used to plot relationship between two variables

− Including time series

− Remember X (horizontal axis), Y (vertical axis)

• Leveraging integration and built in functionality to quickly create a plot

− Can call .plot() from a pandas DataFrame

− plt.show() is the command to display the plot

Plotting

#load sp500 data set, with parsed dates

>>> sp500 = pd.read_csv("../StockData/SP500.csv", index_col=0, parse_dates=True)

>>> print(sp500.describe())

#The packages are integrated so you can pick a column and just plot it

>>> import matplotlib.pyplot as plt

>>> sp500['Adj Close'].plot()

>>> plt.show()

>>> plt.ylabel("Index Adj Close")

>>> plt.title("SP500 (Source: Yahoo)")

99

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using pandas – Plotting

100

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Using pandas – Plotting

• Adding axis labels is good practice

− The axis is labeled automatically because the package understands the series date index

− All formatting is done before the plt.show() command

• Axis labels

− .xlabel() & .ylabel() take strings

− .tltle() takes a string

101

Using Python - Appendix

J
.P

.
M

o
rg

a
n

 J
u

ly
 2

0
2

1

© 2006 The Marquee Group Inc.

Appendix

• Lexicon

− Method: a function that you can call from an object

− Function: a subset of code within your program (script) that can be called by referencing it’s

name. The function can accept variables from the main program and return values if required.

− Cast: to change a variable/object type to a specified type

• Cells/Chunks

− Some Python IDEs can interpret a section of code as a “chunk” or a “cell”

− When the cell is executed, it will run until it reaches the start of the next cell.

− This is a useful way to run just sections of the code instead of the entire code

%% Cell 1

The two percent signs after the hashtag denote the start of a
cell. To denote the end, start a new cell.

%% Cell 2

103

For more information on
The Marquee Group:

56 Temperance Street, Suite 801

Toronto, ON M5H 3V5

TheMarqueeGroup.com

info@themarqueegroup.com

+1 416 583 1802

https://www.instagram.com/themarqueegroup_/
https://marqueegroup.ca/
https://www.youtube.com/channel/UCNId4cO27M909Msf_MksVCw
https://www.instagram.com/themarqueegroup_/

